
1

ADVANCED MONITORING OF
LARGE-SCALE POSTGRESQL DEPLOYMENT IN

TOMTOM

pgconf.eu 2017

Agenda

2

• About us

• TomTom – what do we do?

• Why monitoring is important?

• Who should monitor?

• What should we monitor?

• Metrics & Tools

• What changes when hundreds of databases are to be monitored?

• Conclusion

About Us

3

Michał Gutkowski

michal.gutkowski@tomtom.com

Software engineer solving problems with
Java, Python, Bash and SQL

Rafał Hawrylak

rafal.hawrylak@tomtom.com

Software developer and database expert

About Us – We Are From Łódź!

4

We are from Lodz, Poland!

TomTom – What do we do?

5

6

• Database with spatial features

• Transactional and versioned changes

• Massive automated tools editing map

• 2000+ of manual editors

• Billions of map objects

TomTom - What do we do?

MapMaking Platform in 2017

7

• PostgreSQL 9.5 + Postgis 2.2

• 150+ database machines – 32 cores, 256GB RAM, ssd drives in RAID

• Storage – 160TB

• Daily db size increase – 200GB

• Inserted rows count 15k per second

• Queries count – over 600k per second

Why monitoring is important?

8

• System health-check and maintenance

• Alerting and reliable notification system

• Detect performance regression – software, configuration, hardware changes

• Software optimisations: queries, batching

• Cost-efficiency – run it cheaper

• Business process improvements: scheduling, task queues, separate users with priorities

• Adjust business processes – self healing system

9

Adjust business process

Metrics:
Get value

Is it range?

Throttle down

In range – do nothing

Throttle up

Finish

• CPU
• Replication lag
• Success rate

Who should monitor?

10

• Production monitoring team is responsible for catching incidents

• Database team is responsible for administration, maintenance and tuning

• Every developer or tester has access to metrics from production environment

• Teams are responsible for delivering changes in software and database

• Full development cycle: design, implementation, deployment and monitoring on production

• Top-down responsibility

What should we monitor?

11

• Collect both business and low level metrics (Kibana, Prometheus, Munin)

• Alerting should be built on top of business metrics

• Low level metrics should be used for root cause analysis

Throughput Success rate

Queries Operational systemStorage Replication

Alerting

12

• Define rules and thresholds for metrics

• Remember – only business metrics for alerting!

• Use automated notification (e-mails, Slack or PagerDuty)

• Sample business metrics:
• Health check:

• Success rate

• Performance
• Application response times
• Requests per second

Monitoring: which metrics are important

13

Storage ReplicationQueries

• Connections
• Active queries
• Query statistics

• Locks
• Objects size
• Vacuum processes
• Bloat
• bg writer and

checkpoints

Other

• Errors
• Statistics of tables
• Statistics of

indexes

• Lag

Operational
system

• CPU
• Disk IO
• Memory
• Network

Monitoring: postgresql internals

14

http://blog.postgresql-consulting.com/2015/11/postgresql-observability-views.html

Monitoring: connections

15

Why?

• Indicate problems in higher tiers (application services are down, network problems)

• Changes in usage pattern of application layer (raised number of connections)

• More connections mean more resources utilized

How?

• SELECT usename, count(1) FROM pg_stat_activity WHERE state <> 'idle' GROUP BY 1 ORDER BY 2 desc;

• pg_view

Monitoring: pg_view

16

https://github.com/zalando/pg_view

Monitoring: active queries

17

Why?

• Indicate currently long running queries

• Overview types of queries currently running

How?

• SELECT query, count(1) FROM pg_stat_activity WHEREstate <> 'idle' GROUP BY 1 ORDER BY 2 desc;

• pg_view

• pg_activity

Monitoring: pg_activity

18

https://github.com/julmon/pg_activity

Monitoring: query statistics

19

Why?

• What queries are executed:

• Types of queries

• Top queries (number, total time)

• Parameters

• Find slow queries requiring optimization

• Check resource usage by particular queries

• Find queries causing timeouts

How?

• pg_stat_statements

• postgres logs

• munin

Monitoring: errors

20

Why?

• Data corruption

• Database was shutdown

• Database not being able to start up

• Data not accessible:

wrong user priviliges, full disk

How?

• zgrep –i fatal /var/log/db/postgresql-* | less

Monitoring: locks

21

Why?

• Verify if some offline processes do not block applications (operations freezing big chunks of data like whole tables)

• Verify if some application processes do not block other applications processes

• Deadlocks

How?

• SELECT * FROM pg_locks WHERE granted = false;

• munin

• pg_view, pg_activity

• postgres logs (for deadlocks)

Monitoring: objects size

22

Why?

• Control diskspace

• Know the largest objects, control increase

• Changes in usage pattern of application layer (tuples count, average tuple size)

How?

• Munin to catch trend

• pg_total_relation_size(relid) – table + indexes size

• pg_relation_size(relid) – tables or index size

• pgstattuple(regclass) – for precise results

• pgstatindex(regclass) – for precise results

• SELECT reltuples AS approximate_row_count FROM pg_class WHERE relname = 'tbl';

Monitoring: statistics of tables

23

Why?

• Changes in usage pattern of application layer

• Types of search (need for indexes)

• Number of inserted, updated, deleted tuples

• Analyze and vacuum info

How?

• pg_stat_user_tables

Monitoring: statistics of indexes

24

Why?

• Changes in usage pattern of application layer

• Types of search (not used indexes may be dropped)

How?

• pg_stat_user_indexes

Monitoring: vacuum process

25

Why?

• Vacuum effectiveness

• To know how much resources are used by vacuum process

How?

• pg_view

• htop

• iotop

• postgres logs

Monitoring: bloat

26

Why?

• If you do a lot of updates or deletes and readings at the same time your tables and indexes

get bloated

• Having bloated tables or indexes causes: uneffective space usage, slower reads and writes

How?

• pg_stats (estimated) – implemented also in check_postgres scripts

• pgstattuple extension (exact, but slow query) - includes pgstatindex

• pgstattuple_approx (quite exact, quite fast)

Monitoring: bg writer and checkpoints

27

Why?

• Influence on write performance

How?

• pg_stat_bgwriter

Monitoring: replication lag

28

Why?

• Usability of standbys in terms of fresh data

• Are standbys in sync?

• Streaming replication depends on resources utilization (network, cpu, disk io)

How?

• Primary: pg_stat_replication

• Standby: SELECT

now() - pg_last_xact_replay_timestamp();

Monitoring at system level: cpu

29

Why?

• To find processes consuming most cpu

• Having cpu utilization more than 60-70% usually leads to significant drop of performance due to cpu context switching

• To have knowledge what is usual consumption of cpu by specific processes (queries, autovacuum, replication)

• Find areas to optimize

How?

• top, htop

• munin

• pg_stat_statements

Monitoring at system level: disk io

30

Why?

• To find processes consuming disk io most

• Having disk reads more than 90% of hardware capabilities usually leads to significant drop of performance of both reads and writes

• To have knowledge what is usual consumption of disk io by specific processes (queries, autovacuum, replication, bg writer, checkpoints, maintenance)

• Find areas to optimize

How?

• iotop

• munin

• pg_stat_statement

Monitoring at system level: memory

31

Why?

• To find processes consuming most RAM

• Having memory utilization less than 60-70% usually is a waste (possibly cache hit ratio is low)

• To have knowledge what is usual consumption of ram by specific processes (queries mostly)

• Find areas to optimize

How?

• htop

• munin

• Unfortunately there are no statistics related to ram consumption inside PostgreSQL

Monitoring at system level: network

32

Why?

• To find processes consuming network

• Having network utilization more than 90% for a longer period usually means the investigation must be done (which may result in optimizations or

infrastructure enhancement)

• To have knowledge what is usual consumption of network by specific processes (queries, replication, backup)

• Find areas to optimize

How?

• netstat

• munin

What changes when hundreds of databases are to be monitored?

33

Metrics collectors

• Prometheus + exporter plugins

• Munin + plugins

• AppDynamics & Java agents

• custom collectors (queries statistics)

Metrics aggregators

• Elastic Search

• AppDynamics

Visualization

• Kibana, Grafana

• AppDynamics

• Munin

What changes when hundreds of databases are to be monitored?

34

• Don’t rely on manual setups!

• Git – configuration is versioned and kept in external storage

• Ansible – automated configuration management

• Defines which collectors / agents / plugins need to be installed

• Settings for database and system

• Jenkins – automate your job

What changes when hundreds of databases are to be monitored?

35

• Prometheus + Grafana

• Prometheus for storing huge amount of metrics

• Existing exporters for system and database metrics

• Allow collecting custom metrics as timeseries data

• Multiple databases on single chart - aggregation

• Grafana for visualization. It is able to use many different datasources: ElasticSearch, Graphite, Prometheus

What changes when hundreds of databases are to be monitored?

36

• Custom collectors + Elastic Search + Kibana

• Elastic Search for collecting metrics

• Kibana for Visualization

• Munin

• Plugins: built-in and external

• Does not aggregate metrics into single chart

• AppDynamics

• Collecting metrics on application level from many instances

• Dynamic instrumentation

• Alerts on incidents

• Track down the root cause https://prometheus.io/

https://grafana.com/
https://www.elastic.co/products/kibana

http://munin-monitoring.org/

Monitoring: Multiple database instances vs pg_stat_statements

37

• Gathers a bunch of useful statistics of query execution

• The best way to track lots of short queries

• One cumulative sack

• Not usable if you need track query behavior changes

collect from
observed db

Store in collector
Reset on observed

db
Export to logstash

Data available in
Kibana

Repeat every hour

ElastAlert https://github.com/Yelp/elastalert

https://github.com/Yelp/elastalert

Monitoring: stat_statements in Kibana

38

In Kibana, we can easily observe for each particular statement on each and every machine separately (if we want to):

• total execution time

• cpu execution time

• io execution time

• number of calls

• number of rows returned / affected

• average execution time

• average cpu execution time

• average io execution time

• average number of calls

• average number of rows returned / affected

Conclusion

39

• PostgreSQL is great database capable of reaching big goals

• It is scalable and provides good monitoring tools

But it is not enough

• Needs constant monitoring (metrics collection)

• Knowledge sharing: software developers should know how to read basic metrics

• For many instances:

• Aggregated overview on metrics

• Alerting on top of business metrics – not on low level instance metrics

Questions?

40

We are hiring! https://tomtom.com/careers/

